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Introduction

Motivation

How to exploit structure in power grid problems?

@ What tools?
1) Interior Point Methods
2) Parallel Linear Algebra
@ Applications:
1) AC-SCOPF
2) DC-OPF
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Introduction

Interior Point Methods (IPM)

Nonlinear Program

min f(x) s.t. c(x) 0 (NLP)
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X = diag(x), S = diag(s)
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Introduction

Interior Point Methods (IPM)

Barrier Problem

min f(x uZInx, st. ¢(x) = 0 (NLP,)

KKT Conditions

vi(x) —ve(x)A—s = 0
ve'x = 0 (KKT,)
XSe = e
x,s > 0

X = diag(x), S = diag(s)

@ Introduce logarithmic barriers for x > 0
@ For ;1 — 0 solution of (NLP,) converges to solution of (NLP)
@ System (KKT,) can be solved by Newton's Method
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Introduction

Newton-Step in IPM

Newton-Step: Augmented System(IPM)
[ —-H-0 A" ] [ Ax ] - [&—X‘lrxs ]

A 0 Ay &b

where © = X715, X = diag(x), S = diag(s). Matrix A is the
constraint Jacobian, and H is the Hessian of the Lagrangian
function L.

@ NLP needs more work to ensure global convergence.
@ IPM with filter technique (IPOPT?).

!Andreas Wichter and Lorenz T. Biegler. “On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear programming”.
In: Math. Program. 106.1, Ser. A (2006), pp. 25-57. 1sSN: 0025-5610.
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Parallel Linear Algebra for IPM

Newton-Step: Augmented System(IPM)
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Introduction

Structures of A, Q and ¢:
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Introduction

Structures of A, Q and ¢:
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Bordered block-diagonal structure in Augmented System!
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Introduction AC OP DC-OPF

Exploiting Structure in IPM

Block-Factorization of Augmented System Matrix

4)1 BlT X1 b1

0. B | | x| |bs
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-
Solution of Block-system by Schur-complement

The solution to ®x = b is
xo = Clby, bo=by—3;Bid; b
Xj = ¢i_1(b,'— BI-TX()), = 1,...,!7
where C is the Schur-complement
C=®o— ) BB’
i=1

\

= only need to factor ®;, not ®
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Introduction

Paraller Linear Algebra for the Structured Problem

Parallel IPM Implementation

@ Jacek Gondzio and Andreas Grothey: Exploiting structure in
parallel implementation of interior point methods for
optimization. (OOPS)

@ Cosmin G. Petra and Mihai Anitescu: A preconditioning
technique for Schur complement systems arising in stochastic
optimization.
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Introduction
Paraller Linear Algebra for the Structured Problem

Structure comes from ...

@ Robust Stochastic Programming (scenarios)

@ Network (partitions)

@ Still computationally expensive: memory and communication

@ Possible remedies:
a) scenario elimination
b) iterative method (for solving linear system)
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Introduction

Scenario Elimination

Q scenaio1
O Scenario 2 \; —
Q@ scenaios *‘ B
Q scenaios ‘

Generation Contingencies

Scenario Elimination

@ Start from a smaller model with one “base” scenario.
@ Generate a central point for the reduced problem.

@ Fix the global variables and find feasible solutions of other
scenarios. (Scenario Analysis)

@ Add violated scenario dynamically.
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AC-SCOPF: Scenario & Scenario Elimination

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Stochastic Network Problems



Introduction AC-SCOPF DC-OPF

Generic AC OPF Model

Optimal Power Flow (OPF)

A minimum cost power generation model.

Parameters

ay, B conductance and susceptance of line /

Bp susceptance of power source at bus b

@7 dl? real and reactive power demand at bus b

ft flow limit for line /

. ot
Vb Voltage level at bus b

0p Phase angle at bus b

Pg: Qg Real and reactive power output at generator g

f(lzj)’ f(f‘?j) Real and reactive power flow on line | = (i, )

-
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Introduction AC-SCOPF DC-OPF

Generic AC OPF Model

@ Kirchhoff's Voltage Law (KVL)

f(’;j) = v — vivj[ay cos(6; — &) + Brsin(d; — 0;)]
f(ﬁ’j) = —Biv? — vivj[aysin(6; — 8;) — By cos(5; — 9))]

@ Kirchhoff's Current Law (KCL
Y opg = 1‘(';7,-)+df, Vbe B

glog=b (b,i)eL
Do oa—Bevp = D fou+ VbeB
glog=b (b,i)eL

@ Line Flow Limits a'&)both endg of each line
2 2
(50 + () < (FY)2
(B2 +(F2,P < (1)

0o =0

@ Reference bus

=- AC OPF is a nonlinear programming problem
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AC-SCOPF DC-OPF

Int

Secﬁrity—Constrained Optimal Power Flow (SCOPF)

(N-1)SCOPF

Network should survive the failure of any one line (possibly after
limited corrective actions) without line-overloads.

Setup

@ Contingency scenarios ¢ € C, each has its own power
transmission network.

@ Real generation p; and Voltage v, at the PV bus keep same
for all contingencies. (Global Variables)

@ Each contingency has its flow, voltage, phase angle and
reactive generation: fCP/Q, Ve, 0c, gc- (Local Variables)

@ Possible modification of generator output p. in each
contingency scenario.

@ Seek a generator setting that does not create line overloads for
any contingency
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AC-SCOPF
Structure of the Problem
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@ SCOPF (like many other structured problems) consists of a
small core that is repeated many times.

@ “n-1" requires the inclusion of many contingency scenarios.

@ Only a few contingencies are critical for operation of the
system (but which ones)?

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Stochastic Network Problems



AC-SCOPF

Flow Chart for Solving SCOPF: State of the Art

Set initial contingencies

¥

Solve OPF/SCOPF
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Contingency analysis Update contingencies
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contingency violation

Terminate
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AC-SCOPF
Structured IPM with Scenario Elimination

@ Start from solving much smaller problem of same structure, as
the practical SCOPF solution technique.

@ Apply contingency analysis between IPM steps.

@ Total number of linear algebra to build Schur complement in
each IPM iteration is proportional to the size of scenarios.

@ Combine two iterative processes (IPM and the pratical way to
solve SCOPF) in one. — only one outter loop!
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Numerical Result: OOPS

Original Scenario Elimination
Prob No.Sce | time(s) iters No.Act | time(s) iters No.ActSce

A 1 <0.1 9 0 <0.1 9 1

B 2 <0.1 22 0 <0.1 9 1

6 2 <0.1 13 2 <0.1 13 2
IEEE_24 38 5.7 41 6 3.9 30 6
IEEE_48 78 51.8 71 11 32.4 52 15
IEEE_73 117 204.1 97 16 156.7 92 25
IEEE_96 158 3515 106 20 252.9 76 27
IEEE_118 178 77 [ 42 12252 75 46
IEEE_192 318 2393.7 132 26 1586.0 92 40
L26 41 0.4 14 2 0.3 11 2
L200 371 264.3 53 7 56.4 25 7
L300 566 1153.1 88 17 196.3 22 20

Table: Scenario elimination results

@ More than 200% computational resources are saved!
p
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DC-OPF

DC-OPF: Network Partition
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Int AC OPF

Another Scalable Strategy for Parallelism

Idea: Decompose the model by the power system behavior

@ Graph partitioning technique.

@ Decompose the large network into several “equal-sized”
pieces.

@ Minimize the number of edge cuts between separated
components.

@ Advantages: Solve the model for each piece of cake in parallel!

@ Difficulties: Unusual as generic stochastic programming:
Partitioning may introduce high degree of coupling vars and
constraints.
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Introd on

DC-OPF formulation

DC-OPF formulation (Default)

@ Kirchhoff's Voltage Law

2
P =—23 aysy, VieL
1 ben
@ Kirchhoff's Current Law

> pg= Y, fhy+df, VbeB

glog=b (b,i)eL
1 2 Flow %se P_Gen
@—' l—@ L1 L2 L3 B2 B3 Gl1 G2 G3 G4
L1 . .
wole | m_
L3 H B
o |l Il Tl
3 ket | = | I [ |
= | [l |

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey Scalable Strategies for Stochastic Network Problems



The structure of the matrix components in IPM

@ Each partition corresponds to a diagonal block in the

constraint Jacobian.

@ Variables and constraints corresponding to the cuts are moved

to the borders.

Part 1

Part 2 |

Cut ‘

Nai-Yuan Chiang, Victor M Zavala, Andreas Grothey

Part 1 Part2 Cut

L3 B3 Gl G2 G4 B2 G3 L1 L2
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Augmented System

Part 2 Cut
| ] |
| | u 3 [ |
" B
Part 1 ] i
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o ||
Cut . . .
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Reordered Augmented System

@ The size of Schur complement is 2 times #.cuts!
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DC-OPF
The lllinois system

How does the network partition look like for the real system?

@ lllinois system: 1908 buses and 2522 lines
@ s network partition obvious?

@ How many coupling variables and constraints will be
introduced?

@ How would this affect the computational scalability?

@ What number of partitions is sensible to apply?
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DC-OPF
The lllinois system

43

43

42r 42y

° Latitude N
N
o

° Latitude N
D
o

37
-92

-90 —-88 -92 -90 —-88
° Longitude W ° Longitude W

[llinois system and the system with 2 partitions.
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DC-OPF
The lllinois system
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Illinois system with 4 and 6 partitions.
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The lllinois system

-92 -90 -88
° Longitude W

[llinois system with 10 partitions.
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The lllinois system

Coupling constraints = # of the edge-cuts
@ Determine the size of the Schur complement. (2x)

@ Communication between processes! Parallel efficiency!

600

old I I I I I I I I I

0 10 20 30 4 60 70 80 90 100

0 50
# parts
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Int ion AC OPF

Numerical results from prototype

@ 4690 variables and 4430 constraints — one time slot

Illinois system: DC-OPF

@ Network partition:
less than 0.1s for network partitions (by Metis), regardless of
the number of partitions (from 1 to 100).
Each part only contains 20 buses (with 100 partitions)!

@ Solution time:
4 partitions with four processes (72 cuts):
a) faster than solving the problem in serial.
100 partitions with four processes (449 cuts):
b) slower than solving the problem in serial. (Only 191
buses in each part, but the size of Schur complement is large
— more expensive to solve this problem.)

Scenarios can also be included in the model — nested structure.
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Conclusions

Problems is complicated

@ lllinois system with 24 hours slots and Wind:

10 mins in serial (CPLEX) for the relaxation of the Unit
Commitment.i

We expect:

@ 24 time steps UC for the lllinois system: & 2.5 mins in parallel

@ Partitioning with 10 parts is appliable: 100 cuts per time slot;
100*24 = 2400 Coupling variables for the full problem;
speed up the solution time by a factor of 10!

Future Work: merge all the tools

@ Complete the NLP tool to solve the AC stochastic problem
(Time! UC/ED! Security!)

@ Apply the scenario elimination technique and iterative

methods.
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Conclusions

@ Thank you for your attention!
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